NDSU research could change wind power grid

FARGO -- North Dakota State University faculty will conduct research that could make wind power more widespread, reliable and efficient. "One of the key aspects of this study is to research the possibility of using DC (direct current) grids," sai...

FARGO -- North Dakota State University faculty will conduct research that could make wind power more widespread, reliable and efficient.

“One of the key aspects of this study is to research the possibility of using DC (direct current) grids,” said Nilanjan Ray Chaudhuri, assistant professor with the North Dakota State University electrical and computer engineering department who will run the research project. “With that, we’ll be able to increase wind energy penetration.”

The United States is lagging when it comes to direct current power transmission technology, missing on the benefits DC provides - benefits that could one day transform how the nation gets its power, according to Ray Chaudhuri.

Most U.S. wind energy potential is in the Midwest, where less power is in demand, said Ray Chaudhuri, adding that requires longer transmission lines to get the power to more highly populated areas. In the case of long distance, he said DC transmission technology is more economical. Switching transmission will require more infrastructure to be built but, in the end, it will be more reliable and efficient than alternating current.

A DC system also can help overcome the problem of fluctuating power that plagues wind today, allowing the power to be moved longer distances when the wind is blowing one place but not another, Ray Chaudhuri said.


North Dakota is particularly well-positioned to take advantage of the industry, according to Ray Chaudhuri, adding that the state has so much wind potential that industry could shut its fossil fuel power plants nationwide and supplement it only with North Dakota wind power, according to Colorado-based National Renewable Energy Laboratory data.

Ray Chaudhuri said North Dakota also has the advantage of being home to two high-voltage DC transmission lines owned by ALLETE’s Minnesota Power. He said there are not a lot of these lines in the U.S., most of them are on the West Coast, but more are being built.

Focused research

While DC connection to offshore wind power is being studied in Europe, Ray Chaudhuri saw the opportunity to focus on integrating the U.S.’s onshore wind power. The National Science Foundation’s Division of Electrical, Community and Cyber Systems awarded the five-year, $502,810 grant for the research. He and his students will use the funding to focus on addressing four key aspects.

First, Ray Chaudhuri said there has not been computer modeling done on how a Hybrid DC grid system would work. Within that grid system, different technologies for onshore and offshore wind power will have to be integrated.

“No one has worked on any such hybrid system; that's where we have some challenges,” he said.

Next, the study will take on power sharing. Power generated by wind turbines and the power needed to run everything, from industrial machinery to home appliances, is AC. So, conversions will need to take place from AC to DC and back to AC.


Ray Chadhuri said AC grid does not handle disturbances in power supply well when connected to the DC grid, so he and his students will have to devise a solution for if a converter goes down.

“That becomes a huge problem,” he said, so they will develop a way for other converters still online to share the burden, causing less disturbance to the AC system.

Another problem researchers will need to solve relates to generators currently used on the AC system that kick in when there are power disturbances. The conversion from DC to AC can sometimes block the generators from turning on and providing support.

Finally, because wind farms are typically in rural areas, AC generators are not nearby, making the AC system weak, something the researchers are aiming to combat.

The research for making such a DC system reality will likely take 30 years or more to perfect, Ray Chaudhuri said. Ultimately, he would like to see North Dakota become home to a Center of Excellence for HVDC research.


In addition to study of a developing technology, Ray Chaudhuri said the NSF Career Award grant, a competitive and prestigious award in the scientific community, will allow him to achieve his life-long goal of integrating research and education - developing new ideas through research while also educating the next generation and creating a pipeline of potential new scientists to help move the industry forward.


Graduate students working on the project can spend a summer at the Manitoba HVDC Research Center on a bi-annual basis to gain international research exposure. Also, Ray Chaudhuri said no schools in the U.S. offer HVDC curriculum, so his program will open the door for those students involved.

For undergraduate students, there will be summer research opportunities.

And, at the grade school level, there will be Science Technology Engineering and Math workshops held in the West Fargo School district and a summer camp at NDSU to pique student’s interest in the field.

Ray Chaudhuri has been working within the school district, conducting engineering workshops that included projects such as building a wind turbine model. He said these new workshops may allow him to take things a step further, presenting students with engineering questions related to testing and data interpretation.


What To Read Next
Commercial farmers in Nebraska, the Dakotas, and Minnesota start using drones for spraying, seeding.
Artificial intelligence can now act as an artist or a writer. Does that mean AI is ready to play doctor? Many institutions, including Mayo Clinic, believe that AI is ready to become a useful tool.
Kevin and Lynette Thompson brought TNT Simmental Ranch to life in 1985. Now, their daughter, Shanon Erbele, and her husband, Gabriel, are taking over the reins, and their sale is for Feb. 10.
Even if it's not a lucrative venture, the hobby of raising rabbits continues at this farm near Sebeka, Minnesota.